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Abstract: A new analysis of concerted reactions, based on the assumption that nuclear motion is prevented from 
altering the nodal structure of orbitals by a substantial energy barrier, is developed. A unitary transform R, con­
strained to be a topological identity, maps the wave function of the reactant system into the geometry of the 
product system. The overlap of the mapped function with the ground state of the products is an indication whether 
the stereochemical reaction path associated with the mapping is allowed in the sense of Hoffmann and Woodward. 
Portions of the charge distribution are merely reoriented by the mapping; a procedure for identifying these portions 
and describing them in terms of bonds is presented. 

The predictions of the stereochemical course 
of reactions provided by the Woodward-Hoffmann 

rules have been thoroughly tested and have proved 
highly reliable.2 While the familiar analyses dealt with 
systems for which symmetry allowed an easy construc­
tion of the necessary correlation diagrams, most experi­
mental tests involved systems without useful symmetry. 
Strictly speaking then, the analysis in its original form 
does not apply to these experimentally interesting cases. 
This is not to say that the correlation diagrams for these 
systems would not be of the form suggested by the sym­
metry arguments; however, to establish the similarity 
would require the laborious and costly exploration of 
the reaction energy surface by MO calculations. Such 
large calculations would seem to be required for the cor­
relation diagram analysis of any type of stereoelec-
tronic process falling outside the classes of reactions 
discussed by Woodward and Hoffmann. In view of 
this argument and considering the possibility that even 
in reactions which are easily handled by symmetry argu­
ments, the geometries of useful symmetry may never be 
physically achieved,3 it seems clear that a more general 
analysis should be sought, which incorporates the 
Hoffmann-Woodward results without using the restric­
tive symmetry analysis. 

It is the purpose of this paper to describe such an 
analysis, based on the nodal structure of occupied 
orbitals. The conceptual base of the new method is 
outlined in part I; part II contains a mathematical for­
mulation of the central mapping operator. In part III, a 
localization method is developed which allows the 
identification of portions of the charge distribution 
which are merely reoriented during a reaction, and exert 
only a minor influence on the reaction. The accom­
panying report describes some applications to systems 
in which use of the simplest Woodward-Hoffmann 
methods is difficult. 

I. Conceptual Basis of the Mapping Analysis of 
Concerted Reactions 

The central assumption of the mapping method is that 
nuclear motion may twist, stretch, and bend molecular 

(1) Chemistry Department, University of Virginia, Charlottesville, 
Va. 22901. 

(2) (a) R. B. Woodward and R. Hoffmann, / . Amer. Chem. Soc, 87, 
395, 2511 (1965); R. Hoffmann and R. B. Woodward, ibid., 87, 2046, 
4389(1965); (b) but see an exception: J. I. Brauman and D. M. Gol­
den, ibid., 90, 1920(1968). 

(3) R. F. Bryan, G. A. Doorakian, H. H. Freedman, and H. P. 
Weger, ibid., 92, 399 (1970). 

orbitals, but will not introduce new nodes into the 
orbitals.4 The assumption is illustrated in Figure 1 by 
the behavior of a mythical two-electron species XY. 
The wave function is represented by a doubly occupied 
orbital 4> = a^0 + (1 - a2),/2t//i, where ^0 = 1/V2-
(IsX + IsY) and ^1 = l/V2(lsX - IsY). The atomic 
basis functions IsX and IsY are assumed to be orthog­
onal; the energy is then given by 

W = Wx + Wy + ZxZYe>ladD + 

a\J + K) + (1 - fl2)(7 - K) 

where Wx and WY are the energies of the isolated one-
electron atoms X and Y, the term ZxZYe2laaD is the 
repulsion between the nuclei, and the remaining terms 
represent the energy of interaction of the electrons; / 
and K are the coulomb and exchange integrals, respec­
tively. As a tends to zero and the node in î i is intro­
duced into the wave function, the energy rises sharply. 
This energy barrier inhibits strongly any nuclear mo­
tion which requires the introduction of a new node into 
an orbital. The prohibition of newly formed nodes 
may be expressed simply in the language of topology; 
the mapping R which produces the orbitals of B from 
the orbitals of A in the reaction A -*• B must be a topo­
logical identity. In other words, the hypersurface 
Hi4>iB can be obtained from Hrff without cutting or 
piercing the latter surface. A new node in the wave 
function between atoms A and B will change the sign of 
the expression S(a on A, b on B) PabPab' from positive to 
negative; here the prime indicates that the density 
matrix has been altered by some transformation. A 
topological identity will associate a positive sign with 
the expression, meaning that bonding (or antibonding) 
is maintained. 

R(AIL^) — • (AU4t
L) 

i i 

In the usage of Woodward and Hoffmann, which we 
follow in this case, the stereochemical path which deter­
mines R is "allowed" only if the orbitals occupied in the 
ground state of B are obtained by mapping. It follows 
that the overlap between the mapped function and the 
ground-state function of B is a useful indication of 
whether the path is allowed. The overlap S = (AUi4>iK\ 
AUj<j>j°) will equal unity if the process is allowed, and 

(4) These ideas are implicit in a study of rearrangements of C3H74" 
systems: C. Trindle and O. Sinanoglu, ibid., 91, 4054 (1969). 

Trindle / Mapping Analysis of Concerted Reactions 



3252 

E-ZE* 

Figure 1. The energy of a hypothetical system is shown as a func­
tion of the configuration mixing parameter a which indicates the 
sizable barrier to the introduction of ane w node into the wave 
function. 
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Figure 3. The block diagonal form of the topological identity M is 
indicated schematically for C4H6. 
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Figure 2. The state overlap is shown as a function of the con­
figuration mixing parameter X. Normal ranges of X are enclosed by 
the boxes. Within these ranges the overlap of functions with like 
nodal structure exceeds 0.95, while the overlap of functions with 
unlike nodal structure does not exceed 0.30. 

equal zero if an excited state of B is obtained by map­
ping. 

If we deal with an approximate mapping operator, 
the orbitals of B will not be exactly reproduced. We 
would expect values of the overlap to be intermediate 
between 0 and 1. For example, consider an orbital of 
B, ^0 = (Xa + X b ) / \ /2 where Xa and Xb are orthog-
onalized atomic orbitals. The approximate mapping 
will produce an orbital 

V = (1 + A2)-'A(Xa + XXb) 

If X > 0 then ^0 and \px have like nodal structures, 
while if X < 0 the nodal structures are unlike. The be­
havior of the overlap with changes in X is shown in 
Figure 2. The boxes enclose normal ranges for X, and 
make apparent that S is greater than 0.95 for functions 
of like nodal structure and is less than 0.30 for func­
tions of dissimilar nodal structure. The square of the 
overlap is a more clear-cut measure; between (0.95)2 

and (0.3O)2 is a full order of magnitude. We will see 
that the square of the overlap is convenient in the math­
ematical formulation of the problem. From the pre­
ceding arguments we can hypothesize that nodal struc­
ture is conserved during concerted reactions, and that 
the overlap between the mapped function and the 
ground-state function of the products is a useful indica­
tion whether a reaction is allowed. The next task is to 
formulate the mapping operator in a way consistent 
with these suggestions. 

II. Mathematical Expression of an Approximate 
Mapping Operator 

Given orbitals occupied in state K of A and orbitals 
occupied in the ground state 0 of B, we seek a mapping 
R which is a topological identity and produces or­

bitals similar to those of B by its action on the orbitals 
of A. We may start from an expression of the overlap 
between arbitrarily mapped orbitals and the ground-
state function of B; the overlap is easily evaluated by 
the method of corresponding orbitals.8 The matrix 
D*D is formed, where D4 = (4>iKl^i°), and diago-

The overlap is given by 5 nalized; U*D*DU = (8tjdt). 
= n,(rf()

l/'. 
We will find it convenient to work with the trace of 

D^D, since this quantity is invariant to unitary trans­
form of the matrix; it may be interpreted as the sum of 
squares of the overlaps between the corresponding or­
bitals of A and B, TrD*D = S ^ . We obtain the follow­
ing expression for an element of D *D. In terms of the 
elements of the R transform and the LCAO coefficients 
of the orbitals 

(D*D)K; = £ c x / 

if we assume an orthogonalized basis set (as in most 
approximate MO methods).6 The trace is 

K vctfim 

V4Tr(RP-1R+P^) 

The elements of R may be determined by requiring the 
trace to be a maximum, subject to the condition that R 
be a topological identity. This condition will be satis­
fied by the use of some simple but drastic assumptions. 

In this report we take the very simple view that R may 
reflect the stretches, bends, and twists associated with a 
reaction, but charge transfer will be disallowed. A 
twist at a certain center can be considered to simply re­
orient the p-type basis functions on that center. Sim­
ilarly, bends and (to some extent) stretches have the 
effect of rehybridizing the basis functions on the affected 
center. Thus we can be confident of representing the 
major results of nuclear motion by a series of transfor­
mations of the basis functions on each center. The 
form of a mapping transform will be block diagonal 
with blocks of dimension 4 X 4 for each first-row atom 
such as carbon, a single diagonal element for hydrogen 
atoms, etc. Figure 3 shows a sample R matrix for 
butadiene-cyclobutene. 

We can be assured that the one-center transforms 
comprise a topological identity by considering the sign 

(5) H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. 
Parr, / . Chem. Phys., 47, 1936 (1967). 

(6) (a) J. A. Pople and G. A. Segal, ibid., 43, S136 (1965); 44, 3289 
(1966); (b) Quantum Chemistry Program Exchange, Chemistry De­
partment, Room 204, Indiana University, Bloomington, Ind. 47401. 
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of the expression 

2-i 2^(P )ob(P Jab ~ 2Li ZJ Z\JP'ab V ""*• V 
a on ^ H n B a on Ab on B fi.v 

Here the one-center transforms are labeled by a super­
script indicating the atom on which the transform is de­
fined. The density matrices are also labeled with super­
scripts indicating the atoms involved. The expression 
can be rewritten in the following way 

fj. on Ab on B 

Since the latter is simply a sum of squares, it must be 
positive or zero, assuring that the one-center transforms 
do not affect the nodal structure. 

We wish to determine the elements of R by imple­
mentation of the condition that Tr(D*D) be a max­
imum. Direct construction of R is beyond our reach 
at this time, but we have devised an iterative method 
similar to the Jacobi procedure for diagonalizing a 
square symmetric matrix. Consider a model transform 
Ra/3

(2) which may be specified by two indices a and /3 
referring to two basis functions X0, and X13 on center J, 
and a single angle of rotation wa/S. The two-dimen­
sional rotation is given by 

I 
j 1 0 0 0 
'i 0 cos w 0 — sin w 

0 0 1.0 0 
0 sin w 0 cos w | 

For concreteness the indices 2 and 4 on carbon J have 
been used. The action of R on Tr (D*D) is written 

a = Tr(D±D) - ^ Z R / M X ( 2 , P 7 X / / P / < 7 / / + 
J(Tf 

J*I 

2-pKmIn R/MX P/XXm + 2 J P V M X ( ^Y jiioR-Jov^V J^J^ 

K*I 
2>X 

We extremize Tr(D+D) with respect to the angle wa/S 

by setting its derivative to zero. After some manipu­
lation, including neglect of second powers of sin coa/3, 
we recover an expression for tan (wa/3). 

2L,\"u3J" "iajv ~ P IaJv " Ifijv ) / 
j _ Jv^Iafi A tan oiafs — ^ A B _ 

2-,\riPJ" rI0Jv T *lajv ITJaJ1, ) D 
Jv^Iafi 

sin w a / = AI(A-2 + £2)1/! cos « „ / = B/(A2 + 52)Vl 

This solution may lead to minimal as well as maximal 
a, so we must check on the second derivative, adjusting 
w a / so that it is negative. This one-parameter trans­
form is the basis for an iterative process; a sequence of 
such transformations, with systematic variation of the 
indices, is applied to a until a converges within some 
tolerance, or all angles wa/J approach zero. 

The products of this calculation are (1) wave func­
tions mapped from reactants toward products; (2) the 
overlap of the mapped wave function with the ground-
state function of the products; and (3) a set of roots du 

which may be interpreted as the square of the overlaps 
of corresponding orbitals in the mapped and ground 
state sets. These roots indicate to what extent indi­

vidual orbitals are simply reoriented during the reac­
tion—such orbitals will be associated with roots very 
near unity even for the approximate mapping operator 
we have available. Smaller roots indicate that the 
mapping has not accurately reflected a reorganization 
of the charge in a certain orbital. 

The portion of the charge density which is merely re­
oriented during a reaction could be interpreted as rep­
resenting the bonds which do not participate in the 
reaction. A mathematical means of transforming the 
reoriented portion of the charge into parts corre­
sponding to bonds is developed in the following section. 

III. Localization Formalism 

Given a set of orbitals, the feasibility of a localized 
description and the distribution of bonds can be de­
duced from the bond index matrix.7 However, the 
same information can be gotten at a glance from trans­
formed orbitals determined by some localization cri­
terion.8 The localization methods referred to in ref 8, 
with the exception of that described in ref 8c, are not 
applicable to the wave functions with which we deal.9 

In view of the substantial amounts of computer time 
required by the method of Trindle and Sinanoglu,80 at 
least in the context of the mapping calculation, we pre­
sent a population localization method similar in spirit to 
that of Magnasco and Perico8d but suitable to wave 
functions expressed in orthogonalized bases. The new 
method should be even faster than that described in ref 
8d since we use a steepest ascents approach rather than 
the series of two-dimensional rotations employed by 
Magnasco and Perico. 

Following the ideas of Magnasco and Perico we as­
sume that the amount of charge in an orbital, confined 
to a previously chosen set of atomic orbitals expected to 
participate in a bond, is a useful measure of the localiza­
tion of that orbital. In an orthogonal basis we cannot 
use the definition of partial Mulliken populations; the 
bond index is a suitable parallel quantity. The bond 
index Wat is given by 

" ab = "ab = ^2L ^ ia^ ib^ ia\/ib ( U 
ij occ 

where P is the bond order, and the C s are LCAO ex­
pansion coefficients for the orbitals; the sum is taken 
over all occupied MO's. Wab may be interpreted as 
the charge in atomic orbital "a" involved in bonding 
with atomic orbital "b . " We define a local orbital bond 
index for the /th MO, choosing a set of atomic orbitals 
G4 expected to be involved in the /th bond. 

Bt = 4EC,a
2C ! 6

2 (2) 
ab in Gi 

The total localization measure is simply B = S5 ( . 
This quantity is always positive; maximizing it is equiv-

(7) C. Trindle, / . Amer. Chem. Soc, 91 , 219 (1969). 
(8) (a) S. F. Boys, Rec. Mod. Phys., 32, 296 (1960); S. F. Boys and 

J. M. Foster, ibid., 32, 300 (1960); S. F. Boys in "Quantum Theory of 
Atoms, Molecules and the Solid State," P. O. Lowdin, Ed., Academic 
Press, New York, N. Y., 1966; (b) C. Edmiston and K. Reudenberg, 
J. Chem. Phys., 43, 597 (1965); (c) C. Trindle and O. Sinanoglu, ibid., 
49, 65 (1968); (d) V. Magnasco and A. Perico, ibid., 47, 971 (1967); 
(e) W. H. Adams, ibid., 34, 89 (1961); 37, 2009 (1962); 42, 4030 (1965). 

(9) These are semiempirically determined SCF wave functions 
expressed in an orthogonal basis, such as are obtained by the C N D O 
method and many related refinements. Magnasco and Perico's original 
method is applicable to extended Hiickel functions or others expressed 
in an overlapping basis. 
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alent to confining the orbitals to the sets G4 or local­
izing them to the i bonds. 

It is possible to develop a 2 X 2 iterative method for 
the maximization of B similar to the method used by 
Magnasco and Perico, but we wish to explore the po­
tentially faster steepest ascents approach. The tech­
nique discussed below is similar to that used by Taylor 
in his implementation of the Lennard-Jones and Pople 
coulomb localization criterion.10 Let the localization 
transform be approximated by T ~ I + eA; I is the 
identity and A a first-order correction. The number e 
is used as an ordering parameter. Since (I + eA)-
(I + eA)* = I + e (A + A*) + 0(e2) we demand that 
Atr = —A to assure that T is unitary to first order in the 
correction A. A is thus traceless and skew-symmetric. 
The effect of I + eA on the localization measure B is 
shown below. 

B> = B + 4Y,\ ECXaCiaCib*-
i>k J ab in Gv 

Z^CiaCKaCKa CKb [AiK + 0(A *) (3) 
ab in GK ) 

The variation of B' must be zero, subject to the con­
straint that 2S,>A-AiX

2 be constant. Thus, by the 
method of undetermined multipliers 

«*' = 4 £ } ^1CKaCta - Y,CiaCKaCK^\bAiK = 0 
i>K I ab In Gi ab in GK ) 

A5[2£(A«)2] = 4A£A i X = 0 (4) 
i>K i>K 

These equations are satisfied if 

AJX = z_jCKaCiaCitl — 2_,C iaC KaC Kb~ (5) 
ab in Gi a}> in GK 

While the antisymmetry of A guarantees unitarity of T 
to first order in A, often the departure from unitarity is 
unacceptable, particularly in the initial, long steps of 
localization. T may be unitized by forming the prod­
uct TT* which may be represented as I + q. Define 
Q~v-by its Taylor series; Q~1/! = I — 1I2(I +

 3Al2 — • • •• 
The product A = Q-1''2 (1 + A) is unitary. The uni­
tized matrix A is applied to the matrix or orbitals, and 
localizes them to some extent. In an iterative process, 
a new transformation matrix is constructed with the 
new coefficients, etc., until B converges to its maximum. 

The formulas 2 through 5 are suitable for a single-
determinant wave function composed of doubly oc­
cupied orbitals, encountered in most simple SCF cal­
culations. However, in this context we are concerned 
with sets of corresponding orbitals; these orbitals arise 
from any different-orbital-different-spin or multicon-
figurational wave function, as well as from the mapping 
analysis, which is our main interest. It is a simple matter 
to extend the localization to sets a and b of corre­
sponding orbitals. Let the localization measure be 

B = X1Bi= 72 .E[4E(^2f l»2 + bia%^)] (6) 
{ occ i occ af» in Gi 

After an analysis exactly parallel to that given above, we 

(10) W . J . T a y l o r , J. Chem. Phys., 4 8 , 2385 (1968) . 

find 
AiK = lh.\ EOx0«w«»2 + W>*.6«2) -

/ ab in Gt 

Yj(aiaaKaaKh
2 + biabKabKb

2)\ (7) 
ab in GK \ 

The matrix A derived from eq 7 is applied to both sets 
a and b, with this restriction. The sum over / in (6) 
and the indices i and K in (7) range over orbitals which 
have like roots in the matrix D*D discussed in part II, 
and the matrix A is applied to these orbitals only. 

IV. Choice of the Local Sets of Basis Functions G4 

From the derivations, it appears that the local orbitals 
determined by the population criterion would be de­
pendent on the makeup of the sets G1 of atomic orbitals 
chosen to represent each bond or lone pair. The 
choices are arbitrary, in principle, but in practice this is 
rarely a problem. In systems expected to be largely 
localized, so that all bonds are two-center entities, the 
choice is straightforward. CC bonds in alkanes would 
contain all the valence atomic orbitals on the bonded 
carbons, for example. Small amounts of derealiza­
tion such as found in formic acid or butadiene will not 
invalidate this simple approach. 

If intuition fails, the bond indices can provide direct 
aid. Generally the compass of a set G4 is inadequate if 
the sum S0Hn a ^ s is not near one. For example, the 
total 7T bond index between adjacent carbons in ben­
zene is 0.50 while the T bond index between a terminal 
carbon and its neighbor in butadiene is 0.87; localiza­
tion of the 7T orbitals in benzene to two-center bonds 
fails, but the x orbitals in butadiene are substantially 
localizable. (Benzene tv orbitals may be localized to 
(nonunique) three-center bonds.) 

Summary 

The conceptual basis and an approximate mathe-
metical formulation of a new analysis of concerted 
reactions are described. The central assumption of this 
mapping analysis is that the distortions producing a 
product wave function from a reactant wave function by 
a certain reaction route may not include the introduc­
tion of new nodes, if the reaction is to be allowed (in the 
usage of Hoffmann and Woodward). The Wood­
ward-Hoffmann analyses based on symmetry argu­
ments are special cases of this assumption. A mapping 
operator which obeys the stricture that no change in nodal 
structure is permitted is constructed. The overlap be­
tween the mapped function and the wave function of the 
desired function is a criterion of the allowed character of 
a reaction. A product of the mapping is the identifica­
tion of a portion of the charge distribution which is re­
oriented but not substantially reorganized during the 
reaction. A localization method for resolving this 
passive segment of the charge into bonds and lone pairs 
which are transferrable from product to reactant is de­
veloped. Applications of these new methods of anal­
ysis are described in the accompanying paper. 
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